If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-19a+77=0
a = 1; b = -19; c = +77;
Δ = b2-4ac
Δ = -192-4·1·77
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{53}}{2*1}=\frac{19-\sqrt{53}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{53}}{2*1}=\frac{19+\sqrt{53}}{2} $
| 3+12c=15 | | 3+12c=63 | | 8(4w+6)/5=-10 | | 6r^2-72r+120=0 | | 2(4s+6)=36 | | 6(2l+10)=132 | | (u-7)*7=63 | | x/12=20/15 | | -8+2s=16 | | 24x=8-27x=2-9 | | -8+2s=92 | | -35+a=7(7a-5) | | -7(1+3r)=12-2r | | 6-6=9x+3x | | -7(1-3r)=12-2r | | 6-6=9x=3x | | 6(x+5)=40+4x | | 1x-2=2-5x | | 0.2x-4,8=0 | | 4w-10w=-24 | | -5+3b=97 | | 2x^2+24x+3840=0 | | 5.333x+8.5=3.333 | | 1/2t+36=-1 | | 3y=5y(4+5) | | 51/3x+81/2=31/3 | | (5+2x)6=-1x+4 | | -3(x-6)+8-2x=-8 | | −2x−6= 3x−21 | | 3c+2c=9c | | (t+2)/2-1/4=1 | | 36a-11=205 |